287 research outputs found

    The Stellar Halo in the Large Magellanic Cloud: Mass, Luminosity, and Microlensing Predictions

    Full text link
    Recently obtained kinematic data has shown that the Large Magellanic Cloud (LMC) possesses an old stellar halo. In order to further characterize the properties of this halo, parametric King models are fit to the surface density of RR Lyrae stars. Using data from both the MACHO and OGLE II microlensing surveys, the model fits yield the center of their distribution at RA = 05:21.1+-0.8, Dec = -69:45+-6 (J2000) and a core radius of 1.42+-0.12 kpc. As a check the halo model is compared with RR Lyrae star counts in fields near the LMC's periphery previously surveyed with photographic plates. These data, however, require a cautious interpretation. Several topics regarding the LMC stellar halo are discussed. First, the properties of the halo imply a global mass-to-light ratio of M/L_V = 5.3+-2.1 and a total mass of 1.6+-0.6 10^10 M_sun for the LMC in good agreement with estimates based on the rotation curve. Second, although the LMC's disk and halo are kinematically distinct, the shape of the surface density profile of the halo is remarkably similar to that of the young disk. For example, the best-fit exponential scale length for the RR Lyrae stars is 1.47+-0.08 kpc, which compares to 1.46 kpc for the LMC's blue light. In the Galaxy, the halo and disk do not resemble each other like this. Finally, a local maximum in the LMC's microlensing optical depth due to halo-on-disk stellar self-lensing is predicted. For the parameters of the stellar halo obtained, this maximum is located near MACHO events LMC-4 and LMC-23, and is large enough to possibly account for these two events, but not for all of the observed microlensing.Comment: 11 pages, 1 figure, accepted to ApJ Letter

    Long secondary periods in variable red giants

    Get PDF
    ‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.15401.xWe present a study of a sample of Large Magellanic Cloud red giants exhibiting Long Secondary Periods (LSPs). We use radial velocities obtained from VLT spectral observations and MACHO and OGLE light curves to examine properties of the stars and to evaluate models for the cause of LSPs. This sample is much larger than the combined previous studies of Hinkle et al. and Wood, Olivier & Kawaler. Binary and pulsation models have enjoyed much support in recent years. Assuming stellar pulsation, we calculate from the velocity curves that the typical fractional radius change over an LSP cycle is greater than 30 per cent. This should lead to large changes in Teff that are not observed. Also, the small light amplitude of these stars seems inconsistent with the radius amplitude. We conclude that pulsation is not a likely explanation for the LSPs. The main alternative, physical movement of the star – binary motion – also has severe problems. If the velocity variations are due to binary motion, the distribution of the angle of periastron in our large sample of stars has a probability of 1.4 × 10−3 that it comes from randomly aligned binary orbits. In addition, we calculate a typical companion mass of 0.09 M⊙ . Less than 1 per cent of low-mass main-sequence stars have companions near this mass (0.06–0.12 M⊙) whereas ∼25–50 per cent of low-mass red giants end up with LSPs. We are unable to find a suitable model for the LSPs and conclude by listing their known properties.Peer reviewe

    Semiregular variables with periods lying between the period-luminosity sequences C', C, and D

    Get PDF
    We analyze the distribution of semiregular variables and Mira stars in the period-luminosity plane. Our sample consists of 6169 oxygen-rich long-period variables in the Large Magellanic Cloud included in the OGLE-III Catalog of Variable Stars. There are many stars with periods that lie between the well-known sequences C and C′. Most of these stars are multi-periodic and the period ratios suggest that these stars oscillate in the same mode as the sequence C stars. Models suggest that this mode is the fundamental radial pulsation mode. The stars with primary periods between sequences C and C′ preferentially lie on an additional sequence (named F), and a large fraction of these stars also have long secondary periods (LSPs) that lie between sequences C and D. There are also a small number of stars with primary periods lying between sequences C and D. The origin of this long-period variability is unknown, as is the cause of sequence D variability. In addition, the origin of sequence F is unknown but we speculate that sequence F variability may be excited by the same phenomenon that causes the LSPs

    A Double-Mode RR Lyrae Star with a Strong Fundamental Mode Component

    Full text link
    NSVS 5222076, a thirteenth magnitude star in the Northern Sky Variability Survey, was identified by Oaster as a possible new double-mode RR Lyrae star. We confirm the double-mode nature of NSVS 5222076, supplementing the survey data with new V band photometry. NSVS 5222076 has a fundamental mode period of 0.4940 day and a first overtone period of 0.3668 day. Its fundamental mode light curve has an amplitude twice as large as that of the first overtone mode, a ratio very rarely seen. Data from the literature are used to discuss the location in the Petersen diagram of double-mode RR Lyrae stars having strong fundamental mode pulsation. Such stars tend to occur toward the short period end of the Petersen diagram, and NSVS 5222976 is no exception to this rule.Comment: 14 pages, 4 figures, To be published in the March, 2006, issue of PAS
    • …
    corecore